
The Effects of Net Ordering in Global Routing
Arthur Bianco

Dept. of Computer Science and Statistics (INE)
Federal University of Santa Catarina (UFSC)

Florianopolis, Brazil
a.p.bianco@grad.ufsc.br

Renan Netto, Tiago Fontana, Sheiny Fabre,
José Luis Güntzel

Dept. of Computer Science and Statistics (INE/PPGCC)
Federal University of Santa Catarina (UFSC)

Florianopolis, Brazil
{renan.netto, tiago.fontana, sheiny.fabre}@posgrad.ufsc.br,

j.guntzel@ufsc.br

Abstract—The global routing step is critical to ensure a good
detailed routing solution, and therefore the feasibility of the entire
circuit. Techniques for global routing either operate directly
on a 3-D grid or flatten the routing space into a 2D grid,
looking to speed up the routing step. In the latter case, the
2D solution is then projected back onto the 3D space by the
so-called layer assignment step. Whichever method is employed,
many routing techniques rely on maze and/or pattern routing,
which operates on a net-by-net basis using as input a netlist
sorted according to some parameters. In this work, we analyze
various sorting methods and their effects on the global routing
outcome. Particularly, we found that sorting the netlist in the
ascending order could produce results, on average, with 5.91%
fewer vias than in the descending order.

Index Terms—VLSI, EDA, global routing, net sorting

I. INTRODUCTION

To cope with the ever-increasing complexity in IC design,
modern EDA solutions divide the routing step into global and
detailed routing. In global routing, the chip area is commonly
represented as a coarse grid graph. The nodes are called gcells,
which represent rectangular sections of the circuit. Routing
resources are represented by capacity-bearing edges that are
created between adjacent gcells [1]. The nets are then routed in
terms of gcells, creating a general path for the detailed routing
stage to follow.

A well-known approach to the global routing problem
consists of routing each net entirely in a 3D grid using a maze
router (e.g., [2]). This method produces a good solution quality
at the cost of very high execution time. Another common
approach for routing the gcells is to flatten the 3D routing
space into a 2D grid, as done by FastRoute 4.0 [3], NTHU-
Route 2.0 [4], MaizeRouter [5], and then route the nets all on
the same layer through maze or pattern routing. After that, the
routed segments are projected back onto the 3D grid through
layer assignment. This approach is known to produce good
results at reasonable run times. Archer [6] implements its
solution on both 3D and projection-based approaches, and its
authors state that for the benchmarks tested, the advantages of
the projection-based technique outweigh its disadvantages.

CU-GR [7], however, proposed a pattern routing and layer-
assignment initial routing, followed by a maze routing phase.
This solution is novel in that it performs all of the steps directly
in the 3D space, yet displaying excellent run time performance
with contest-winning [8] solution quality.

Routing solutions based on maze routing and pattern routing
algorithms operate on a net-by-net basis and therefore the
quality of their outcome strongly depends on the order through
which the nets are processed. The authors of [6] proposed an
improvement to an earlier version of their router and reported
that the most notable improvement to the layer assignment al-
gorithm was sorting the nets in ascending order of their HPWL
(half perimeter wirelength). NTHU-Route 2.0 [4] improved
NTHU-Routes’ [9] solution by reversing the rip-up and reroute
(RRR) order to happen according to descending order of net
bounding box size and reported better wirelength. CU-GR [7],
interestingly enough, orders the nets in the ascending order of
HPWL, before pattern routing and before each RRR iteration.

This paper aims to analyze the effects of net ordering during
the routing steps. Geared towards that, we relied on CU-GR
and altered the sorting of the nets, before the pattern routing
phase, and in each RRR iteration. We tested ascending and
descending orders on different ordering parameters which in-
clude HPWL and pin count. We evaluated the sorting methods
by measuring their impact on the total wirelength, number of
vias, and number of nets in the first RRR iteration. We chose
CU-GR because it is an open-source state-of-the-art global
router that allows for changing the routing order.

The remainder of this paper is organized as follows. Section
II presents the relevant features of CU-GR used in this study.
We give the methodology for the tests conducted in section
III. The results are presented in section IV and the conclusion
and future work are shown in section V.

II. THE ROUTER

CU-GR was the winner of the ICCAD’19 global routing
contest [8]. The contest’s problem proposition was to create
a global router that, given a DEF and a LEF file, should
output the circuit routing guides of a valid solution. Then, the
resulting files would be fed to Dr. CU [10], an open-source
detailed router that won the ISPD19 Contest [11], to generate
the detailed routing solution that would be used for scoring
purposes.

Figure 1 depicts the flow of CU-GR’s algorithm. It has
3 stages: Initial Routing, Multi-level 3D Maze Routing, and
Route Guide Generation and Patching.

Alessandro Girardi


Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020



In
iti

al
 R

ou
tin

g
M

ul
ti-

le
ve

l 3
D

 M
az

e 
R

ou
tin

g

Pattern Route
Planning

3D Pattern Routing
with Layer

Assignment

Maze Routing
Planning

(Bounding Box
Generation)

3D Maze Routing
within Bounding Box

Route Guide
Generation &

Patching

N

Y

No Overflow Or
Final Iteration

Fig. 1. Overall flow for CU-GR’s algorithm. Image adapted from [7].

A. Initial Routing

First, FLUTE [12] is used to create the rectilinear Steiner
minimum tree (RSMT) for each multi-pin net. Then, a tech-
nique named edge shifting [13] is applied, where edges of each
RSMT are shifted away from each other to reduce congestion.
Next, the order between segments of the same net is decided
by breaking the nets down into 2 pin nets by a depth-first
search traversal through the segments previously generated.
Subsequently, the nets are sorted in the increasing order of
their HPWL and a dynamic programming solution is employed
to perform the 2D pattern routing together with the layer
assignment.

B. Multi-level 3D Maze Routing

Now that the initial routing is complete, the nets with
violations will undergo RRR iterations. Maze routing is carried
out in a coarsened gcell grid, where gcells are compressed into
blocks, so as to find an initial routing solution at a quicker
pace. Then, another maze router will perform the routing
within the bounding boxes created by the previous stage to find
an ideal solution in terms of the original gcells. This technique
was developed as a means of reducing the 3D maze routing
space while still not giving up too much in solution quality.

C. Route Guide Generation and Patching

As a post-processing step, CU-GR adds patches of guides
around identified congestion-intensive regions. If regions di-
rectly above any pins are identified as lacking in routing
resources, the router will patch guides above that pin. Guide
segments are also added around segments that are considered
long enough or regions with inevitable routing violations.

III. METHODOLOGY

We altered CU-GR’s sorting procedure to implement 6
sorting methods different from the original one. Thus, the 7
investigated sorting methods were: nets sorted in ascending
order of their HPWL (ascendingHP), which corresponds to

the original CU-GR sorting method, nets sorted in descending
order of their HPWL (descendingHP), nets sorted in ascending
order of the sum of HPWL and pin count (ascendingNPinsHP),
nets sorted in descending order of the sum of HPWL and pin
count (descendingNPinsHP), nets sorted in ascending order of
pin count (ascendingNPins), nets sorted in descending order
of pin count (descendingNPins), nets in the order in which
they were found in the def file (unordered).

We ran CU-GR, with a single thread, on a subset of the
benchmarks provided for the ICCAD’19 global routing contest
[8]. We chose these circuits, in particular, because they were
the same ones chosen by the contest organizers to evaluate
and score the routers. The benchmark set is composed of six
circuits, each one in two versions: one with 5 routing layers
and another with 9 routing layers. The versions with 5 layers
are marked with ”metal5” and have the same netlist and place-
ment as their homonymous counterparts. Each benchmark has
a net count between 72 thousand and 900 thousand. We chose
these sorting methods because they use important net attributes
that are commonly used to create an efficient sorting method.
We then gathered the data reported by the router, to be used
in our analyses. For reproducibility purposes, the source code
and scripts used in this work are available at [14].

IV. RESULTS

Table I allows for comparing the global routing results
for the ICCAD19 benchmarks using the 7 sorting methods:
Total estimated wirelength (TWL), via count (#vias), and the
number of nets ripped up and rerouted (#RRR) on the first
iteration of multi-level 3D maze routing is reported. The CU-
GR original sorting method (ascendingHP) is highlighted in
yellow and its results were used as a baseline to present the
results of the other sorting methods. The benchmarks with
”19” in their names are larger than those with ”18”. The
circuits increase in size as the second number in their names
increases, which means the largest benchmark is ”19test9”
(and ”19test9metal5”) and the smallest is ”18test8” (and
”18test5metal5”).

It is worth noting the relevance of the circuit attributes
reported in table I. Due to their parasitic capacitances and
resistances, circuit wires have a significant impact on both
delay and power and thus, their lengths must be minimized.
Particularly, vias have a significantly higher RC value than
metal wires and therefore should also be minimized [15].
According to [6], 50% of the total runtime is spent on maze
routing, even though only 2% of the nets are routed using a
maze router. Therefore it is also important to reduce as much
as possible the number of nets requiring RRR iterations, to
reduce runtime.

From the results in table I, one can observe that for the
majority of descending cases the CU-GR original method
(ascendingHP) led to bigger values of TWL for the three
smallest circuits and to smaller values of TWL for the three
largest ones, albeit the difference is less than 1% in all cases.
On the other hand, ascendingHP led to the smallest number
of vias (#vias) for all cases. Concerning #RRR, the original



TABLE I
COMPARISON OF GLOBAL ROUTING RESULTS ACROSS DIFFERENT BENCHMARKS AND SORTING METHODS

18test5 18test8 18test10 19test7Name TWL #vias #RRR TWL #vias #RRR TWL #vias #RRR TWL #vias #RRR
ascending HP 2.70E+07 8.56E+05 8.68E+02 6.44E+07 2.18E+06 2.84E+03 6.68E+07 2.31E+06 5.83E+03 1.19E+08 3.13E+06 5.33E+03
descending HP -0.02% +4.90% -16.71% -0.25% +5.99% -24.59% -0.20% +6.86% -9.46% +0.46% +6.63% +6.73%

ascending NPinsHP -0.03% +0.19% +1.15% 0.00% 0.00% 0.00% +0.03% +0.15% -0.98% +0.01% +0.34% +3.49%
descending NPinsHP -0.04% +4.36% -18.78% -0.30% +5.20% -25.15% -0.23% +5.99% -10.15% +0.34% +5.44% -2.10%

ascending NPins -0.01% +1.90% -5.53% -0.13% +2.24% -15.44% +0.06% +2.14% -1.58% +0.03% +2.46% -1.37%
descending NPins -0.04% +1.91% -22.81% -0.22% +1.86% -19.38% -0.23% +2.74% -8.00% +0.08% +0.86% -22.22%

unordered* -0.05% +1.89% -7.37% -0.23% +2.32% -19.66% -0.11% +2.96% -4.00% +0.06% +2.12% -12.64%

19test8 19test9 18test5metal5 18test8metal5Name TWL #vias #RRR TWL #vias #RRR TWL #vias #RRR TWL #vias #RRR
ascending HP 1.82E+08 5.75E+06 2.73E+03 2.74E+08 9.60E+06 2.42E+03 2.79E+07 8.03E+05 1.14E+04 6.47E+07 1.96E+06 3.43E+04
descending HP +0.45% +5.35% +2.67% +0.56% +5.33% +72.73% -0.54% +5.58% -32.66% -0.21% +5.97% -24.10%

ascending NPinsHP -0.02% +0.17% -5.49% +0.02% +0.19% +4.92% +0.05% +0.21% -2.27% -0.08% +0.08% -1.29%
descending NPinsHP +0.39% +4.70% -8.34% +0.54% +4.66% +61.86% -0.49% +5.41% -32.13% -0.18% +5.76% -24.03%

ascending NPins +0.05% +1.86% -1.79% +0.04% +1.88% +33.22% -0.14% +1.14% -10.69% -0.10% +0.86% -7.31%
descending NPins +0.19% +1.90% -22.93% +0.29% +1.78% +7.89% -0.13% +4.01% -15.24% +0.07% +4.25% -12.30%

unordered* +0.14% +1.96% -6.69% +0.19% +1.78% +51.53% -0.12% +2.56% -15.08% -0.07% +2.72% -11.77%

18test10metal5 19test7metal5 19test8metal5 19test9metal5Name TWL #vias #RRR TWL #vias #RRR TWL #vias #RRR TWL #vias #RRR
ascending HP 7.09E+07 2.08E+06 3.88E+04 1.07E+08 3.07E+06 2.24E+04 1.78E+08 5.60E+06 3.13E+04 2.68E+08 9.34E+06 4.30E+04
descending HP -0.15% +5.71% -19.85% +0.13% +5.80% -9.96% +0.15% +6.36% -27.88% +0.15% +6.42% -26.21%

ascending NPinsHP +0.06% +0.04% -0.06% +0.03% +0.27% +1.17% +0.04% +0.12% -1.05% +0.03% +0.09% +1.34%
descending NPinsHP -0.13% +5.52% -20.27% -0.02% +5.01% -13.89% +0.09% +5.88% -30.20% +0.10% +5.89% -29.11%

ascending NPins -0.03% +0.67% -3.95% -0.03% +2.13% -2.59% -0.08% +1.57% -11.16% +0.02% +1.47% -3.51%
descending NPins 0.12% +4.29% -9.33% -0.21% +1.45% -17.02% +0.02% +3.50% -25.07% +0.02% +3.48% -24.58%

unordered* 0.06% +2.58% -7.19% -0.18% +1.81% -10.70% 0.00% +2.65% -17.58% -0.04% +2.48% -15.32%

method was outperformed by at least 5 of the 6 other methods
for all circuits, excluding 19test7 and 19test9.

For each pair of ascending and descending methods, the
TWL of the descending case is usually less than 1% lower
than its ascending counterpart. It seems that the smaller the
benchmark the more apparent this pattern is, and with bigger
benchmarks this behavior switches. On the other hand, the
difference in #vias is more pronounced and generally higher
for the descending case. When looking at #RRR, the number
of nets that require it is lower for the descending cases, except
for 19test7, 19test8 and 19test9.

In comparing both the HPWL against the NPins sorting
methods and the HPWL against the NPins + HPWL, all
in the ascending order, we find that in a few cases there
were reductions in TWL averaging at -0.06% (min=-0.01%,
max=-0.14%), while in other cases there were inscreases with
an average of 0.04% (max=+0.06%, min=+0.01%), but all
were not significant. However, the #vias is higher for the
NPins (avg=1.74%, max=2.74%, min=0.67%) and the NPins
+ HPWL methods, (avg=0.15%, max=+0.34%, min=+0.00%).
The unordered case is usually comparable, for every bench-
mark, to the NPins cases, when looking at any of the data
reported.

In order to evaluate how the different sorting methods
impacted on each step of the routing algorithm, we analyzed
the #vias and TWL after each stage for the circuits. Fig 2,
breaks down the #vias throughout the routing steps for the
18test8 benchmark. It shows that at the end of the pattern
route step, the #vias for the descending methods is higher than
that of the ascendingHP method. Even though the first RRR
iteration (RRR1) drops the #vias for all cases, the descending
methods still have a much higher #vias than the ascendingHP
method, and subsequent RRR iterations do not further reduce

#v
ia

s

2.18E+6

2.20E+6

2.23E+6

2.25E+6

2.28E+6

2.30E+6

2.33E+6

Pattern Route RRR1 RRR2 RRR3

ascending 
HP

descending 
HP

ascending 
NPinsHP

descending 
NPinsHP

ascending 
NPins

descending 

unordered

Fig. 2. #vias for benchmark ”18test8” after pattern route and after every RRR
iteration.

TW
L

6.35E+7

6.38E+7

6.40E+7

6.43E+7

6.45E+7

Pattern Route RRR1 RRR2 RRR3

ascending 
HP

descending 
HP

ascending 
NPinsHP

descending 
NPinsHP

ascending 
NPins

descending 

unordered

Fig. 3. TWL for benchmark ”18test8” after pattern route and after every RRR
iteration.



the #vias. Fig 3 shows the TWL throughout the routing steps.
We see that the TWL at the end of the pattern route phase is
virtually the same for all sorting methods. It is only after the
first RRR iteration that we can observe a difference between
each method. Next, all the methods undergo a reduction and
after the third RRR iteration (RRR3), the TWL is slightly
lower for the descending methods, however, it is not low
enough to compensate for the higher via usage.

We note that for the 3 largest benchmarks, when using the
descending methods, not only the #vias increased but also the
TWL. This is in contrast with the 3 smaller benchmarks, where
TWL is lower for the descending methods. We believe this
happens due to the RRR iterations also being sorted in the
same manner: when ripping up and rerouting the larger nets
first, the smaller nets undergo long detours to find a valid
route, further increasing wirelength.

Our hypothesis for the increased number of vias when
sorting the nets in descending order of HPWL is that when
routing the larger nets first they often take up routing resources
in lower layers, rather than higher, to benefit from a reduced
via usage. Therefore, the router will struggle to find space for
shorter nets to access the pins, causing complicated detours
and therefore increasing via usage. In contrast, the larger nets
will have plenty of long unoccupied tracks to be routed on.

In addition, routing long planar segments in upper layers
requires fewer vias than assigning several short segments to
those upper layers [6]. As a result, routing the shorter nets
first reduces the overall number of vias, especially because
the majority of nets in the circuit are short. Figure 4 plots a
histogram of nets by their HPWL, and shows that 80% of the
nets have up to 16 of HPWL. A similar behavior can also be
observed in every other benchmark we used.

Fig. 4. Net semiperimeter histogram for benchmark ”19test9”. The X-axis
represent the half-perimeter sizes the nets can fall into and the Y-axis counts
the number of nets in each category.

V. CONCLUSION AND FUTURE WORKS

In this paper, we compared the outcome of IC global routing
when 7 distinct sorting methods are applied in net-by-net

stages. Particularly, we evaluate the resulting total estimated
wirelength, number of vias, and number of nets requiring
rip up and reroute after an initial stage of pattern routing,
followed by subsequent iterations of maze routing. Sorting
the nets by their HPWL in an ascending order yields the best
results in terms of #vias and TWL. However, sorting in the
opposite sense does not necessarily give a lower total estimated
wirelength usage, but a higher via usage. The average via count
across the benchmarks of the descendingHP method is 5.91%
higher than that of the ascendingHP method. Regarding the
#RRR, the original sorting method displays worse performance
than at least one other sorting method for all benchmarks
tested, except for 19test9.

Future research on this subject could take place by sorting
the nets using different constraints such as timing or conges-
tion information. Further, It would be worth performing these
and other tests with the detailed router and reporting the real
definitive score, for completion and confirmation of the results.

REFERENCES

[1] Andrew B. Kahng, Jens Lienig, Igor L. Markov, and Jin Hu. VLSI
Physiscal Design: From Graph Partitioning to Timing Closure. Springer
Science+Business Media, 2011.

[2] J. A. Roy and I. L. Markov. High-performance routing at the nanometer
scale. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(6):1066–1077, 2008.

[3] Yue Xu, Yanheng Zhang, and Chris Chu. Fastroute 4.0: Global router
with efficient via minimization. In 2009 Asia and South Pacific Design
Automation Conference, pages 576–581, 2009.

[4] Y. Chang, Y. Lee, J. Gao, P. Wu, and T. Wang. Nthu-route 2.0: A robust
global router for modern designs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 29(12):1931–1944, 2010.

[5] M. D. Moffitt. Maizerouter: Engineering an effective global router. In
2008 Asia and South Pacific Design Automation Conference, pages 226–
231, 2008.

[6] Muhammet Mustafa Ozdal and Martin DF Wong. Archer: A history-
based global routing algorithm. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 28(4):528–540, 2009.

[7] Jinwei Liu, Chak-Wa Pui, Fangzhou Wang, and Evangeline FY Young.
Cugr: Detailed-routability-driven 3d global routing with probabilistic
resource model.

[8] S. Dolgov, A. Volkov, L. Wang, and B. Xu. 2019 cad contest: Lef/def
based global routing. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–4, 2019.

[9] Jhih-Rong Gao, Pei-Ci Wu, and Ting-Chi Wang. A new global router
for modern designs. In 2008 Asia and South Pacific Design Automation
Conference, pages 232–237, 2008.

[10] Gengjie Chen, Chak-Wa Pui, Haocheng Li, Jingsong Chen, Bentian
Jiang, and Evangeline FY Young. Detailed routing by sparse grid graph
and minimum-area-captured path search. In Proceedings of the 24th
Asia and South Pacific Design Automation Conference, pages 754–760.
ACM, 2019.

[11] Wen-Hao Liu, Stefanus Mantik, Wing-Kai Chow, Yixiao Ding, Amin
Farshidi, and Gracieli Posser. Ispd 2019 initial detailed routing contest
and benchmark with advanced routing rules. In Proceedings of the 2019
International Symposium on Physical Design, pages 147–151, 2019.

[12] C. Chu and Y. Wong. Flute: Fast lookup table based rectilinear steiner
minimal tree algorithm for vlsi design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(1):70–83, 2008.

[13] M. Pan and C. Chu. Fastroute: A step to integrate global routing into
placement. In 2006 IEEE/ACM International Conference on Computer
Aided Design, pages 464–471, 2006.

[14] Cu-gr github fork. https://github.com/RamAddict/cu-gr/tree/SForum.
[15] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Cheng. Elec-

tronic Design Automation: Synthesis, Verification, and Test. Morgan
Kaufmann Publishers, 2008.


